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Abstract. Remarkable anisotropic structures have been recently observed in the order parameter ∆k of the
underdoped superconductor Bi2Sr2CaCu2O8+δ. Such findings are strongly suggestive of deviations from a
simple dx2−y2-wave picture of high-Tc superconductivity, i.e. ∆k ∼ cos kx − cos ky. In particular, flatter
nodes in ∆k are observed along the kx = ±ky directions in k-space, than within this simple model for a
d-wave gap. We argue that nonlinear corrections in the k-dependence of ∆k near the nodes introduce new
energy scales, which would lead to deviations in the predicted power-law asymptotic behaviour of several
measurable quantities, at low or intermediate temperatures. We evaluate such deviations, either analytically
or numerically, within the interlayer pair-tunneling model, and within yet another phenomenological model
for a d-wave order parameter. We find that such deviations are expected to be of different sign in the two
cases. Moreover, the doping dependence of the flatness of the gap near the nodes is also attributable to
Fermi surface effects, in addition to possible screening effects modifying the in-plane pairing kernel, as
recently proposed.

PACS. 74.25.-q General properties; correlations between physical properties in normal and superconduct-
ing states – 74.25.Jb Electronic structure – 74.20.Mn Nonconventional mechanisms – 74.72.Hs Bi-based
cuprates

1 Introduction

Power laws in the low-temperature asymptotic behaviour
of several linear response electronic properties provide
complementary evidence for d-wave symmetry of the or-
der parameter (OP) ∆k of high-Tc superconductors [1,2]
as well as preliminary evidence of ‘exotic’ shapes in the
OP of heavy fermion superconductors, such as UPt3 [3].
This has to be contrasted to an “activated” behaviour
∝ exp(−β∆min), appropriate of s-wave superconductors,
or, in the case of mixed symmetry, of superconductors with
a non-vanishing s-wave contribution to their OP, where
∆min = mink |∆k| > 0. In the case of a non-empty nodal
manifold for the superconducting excitation spectrum Ek,
defined as the locus of points in k-space such that Ek = 0,
a large number of quasiparticles can be created near such
nodes, thus dominating all the low-temperature electronic
properties [4]. An exact analysis allows one to relate the
exponent of the leading power of the low-T expansion of
a given linear response function to the dimension of the

a e-mail: giuseppe.angilella@ct.infn.it

Fermi manifold (defined as the locus of states in k-space
with vanishing dispersion relative to the Fermi level in the
normal state, ξk = 0) and the topological nature of the
nodal manifold, viz. a collection of points, of line segments,
or of surface patches [5,1].

On the basis of group theoretical arguments, the sim-
plest choice for a d-wave gap function on a square lattice
is ∆k = ∆g(k), where ∆ is a T -dependent parameter, and

g(k) =
1
2

(cos kx − cos ky) (1)

is the first basis function associated with the d-wave ir-
reducible representation of the appropriate crystal point
group, C4v [1]. We remark that g(k) is generated, together
with an extended s-wave term proportional to

h(k) =
1
2

(cos kx + cos ky), (2)

by a nearest-neighbour interaction term in real space. Here
and in the following we shall measure the wavevectors in
units of the appropriate inverse lattice spacings. Propor-
tionality to equation (1) allows ∆k to vanish linearly at a
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given point along the Fermi line, which for most cuprate
superconductors can be modelled by the tight-binding ex-
pansion:

ξk = −2t(coskx + cos ky) + 4t′ cos kx cos ky − µ = 0,
(3)

where t = 0.25 eV, t′ = 0.45t measure nearest and
next-nearest neighbour hopping, respectively, and µ is the
chemical potential.

On the other hand, increasing experimental evi-
dence above all from angle-resolved photoemission spec-
troscopy (ARPES) suggests a richer structure in k-space
for the OP of the underdoped high-Tc superconductor
Bi2Sr2CaCu2O8+δ [6]. In particular, the superconducting
gap near the nodal points turns out to be flatter than
predicted by the simple assumption ∆k ∝ g(k) [6]. Such
a feature is consistent with the observation of whole un-
gapped segments of the Fermi line above Tc in the pseu-
dogap regime of underdoped Bi2Sr2CaCu2O8+δ [7], and
will of course serve as a constraint for a microscopic un-
derstanding of the pairing mechanism.

Quite remarkably, qualitatively similar deviations from
a g(k)-like dispersion have been evidenced in the k-
dependence of the antiferromagnetic gap in the related
insulating compounds X2CuO2Cl2(X = Ca, Sr) [8]. Such
a finding has been interpreted in terms of an interrela-
tion between the antiferromagnetic phase of the parent
insulator and the underdoped regime of the intervening
superconductor [9].

In this paper, we argue that such extended structures
in the superconducting OP, interpolating between point
and line nodes, can be included in the definition of ∆k

as higher order terms in g(k). We shall then look for
their signatures in the low-temperature asymptotic elec-
tronic properties of the superconducting cuprates, as cor-
rections to the predicted power-law behaviour. In deriving
our results analytically, we will specifically consider the
interlayer pair-tunneling (ILT) mechanism of high-Tc su-
perconductivity [10], which has been shown to accurately
reproduce most of the observed gap features [11].

2 Extended d-wave gap within the ILT model

A distinguishing feature of the ILT mechanism, compared
to other proposed models of HTSC, is that superconduc-
tivity is driven by a gain in kinetic, rather than potential,
energy as temperature is lowered below the critical tem-
perature Tc. It is assumed that coherent single particle
hopping between adjacent CuO2 layers in the cuprates
is suppressed by the non-Fermi liquid character of the
normal state (e.g. due to spin-charge separation), while
interlayer coherent tunneling of Cooper pairs is allowed
as soon as a superconducting condensate is established.
Confined coherence [12] within CuO2 layers in the normal
state is indeed largely motivated by the absence of coher-
ent transport along the c-axis, whereas a comprehensive
theoretical understanding of it is still lacking. However,
there is now abundant experimental evidence that c-axis

transport in the normal state indeed is incoherent, while
that in the superconducting state may not be [13]. This
seems to warrant attention being paid to unconventional
models of high-Tc superconductivity based on relieving
c-axis frustrated kinetic energy. Recent findings [14,15]
suggest, however, that the ILT mechanism alone is not suf-
ficient to account for the large condensation energy Ec, as
extracted experimentally from measurements of the pen-
etration length λc of several single layered compounds,
such as Tl2Ba2CuO6+δ [14,15], whereas the predictions
of the ILT model agrees with the measured value of Ec

for La2−xSrxCuO4 [16–19]. It has been pointed out, how-
ever, that while considerable experimental effort has been
devoted to the determination of λc, extracting Ec from
existing data on electronic specific heat is by no means
straightforward [20]. A direct evaluation of Ec from its
mean-field expression at T = 0 [21] would relieve the com-
plications arising from thermal fluctuation effects, inher-
ent in the method of integrating specific heat data, from
T = 0 through Tc, recently pointed out in reference [20].
By utilizing the gap equation (Eq. (4)), within the ILT
model, and the expression relating λc at T = 0 to Ec [22],
we find results for λc(T = 0) in Bi2212 which are within
factors of order unity from the experimental values, rather
than factors of 10 to 20 [23]. The observed doping depen-
dence of λc [17] is also qualitatively reproduced [23].

The emerging scenario suggests therefore that some in-
plane effective interaction might co-operate with the ILT
mechanism in establishing the superconducting state [24].
One could think of such a mechanism as a seed for the
Cooper instability, and the origin of the gap’s dominant
d-wave symmetry. Once Cooper pairs are formed in the
appropriate symmetry channel(s) via such in-plane effec-
tive interaction, the ILT mechanism would allow the con-
densate for an additional energy gain, by releasing the
constraint of in-plane segregation.

Without explicitly specifying the microscopic origin
of the in-plane mechanism, we therefore assume the in-
plane pairing potential to be given by Vkk′ = V g(k)g(k′)
(V < 0), thus allowing for d-wave symmetry of the or-
der parameter. The issue of the competition with other
subdominant (s-wave) symmetry channels in the presence
of ILT has been addressed in reference [11], showing that
the d-wave contribution wins out at optimal doping and
in the underdoped regime. Despite its kinetic nature, ILT
can be absorbed in the interacting part of the Hamilto-
nian as an effective term TJ(k)δkk′ , whose k-space lo-
cality enforces in-plane momentum conservation during
a tunneling process [10]. Following reference [10], we as-
sume TJ(k) = t2⊥(k)/t ≡ TJg

4(k), being t⊥(k) the single-
particle interlayer hopping amplitude, with t⊥(k) ∝ g2(k),
as suggested by ARPES as well as by band structure cal-
culations [10,25]. A standard mean-field diagonalization
technique then yields the following expression for the en-
ergy gap [26,11]:

∆k =
∆g(k)

1− TJ(k)χk
, (4)
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where χk = (2Ek)−1 tanh(βEk/2) is the superconduct-
ing pair susceptibility, and Ek = (ξ2

k + |∆k|2)1/2 is the
upper branch of the superconducting elementary excita-
tion spectrum.

Along the Fermi line (ξk = 0) at T = 0, one immedi-
ately sees that:

∆k = ∆g(k) +
1
2
TJg

4(k)sgn[g(k)]. (5)

Such an expression, together with manifestly fulfilling the
requirement of d-wave symmetry, also endows the super-
conducting gap with a richer structure near the nodal
points along the kx = ±ky directions. This is probably
best seen by considering the Fourier expansions:

g(k) = −2
∞∑
m=1

J4m−2(k) cos[(4m− 2)φ], (6a)

h(k) = J0(k) + 2
∞∑
m=1

J4m(k) cos(4mφ), (6b)

TJ(k)/TJ =
9
64

+
a0

2
+
∞∑
m=1

a4m cos(4mφ), (6c)

with

a4m =
1
32
J4m(4k) +

1
2
J4m(2k) +

3
16

(−1)mJ4m(2k
√

2)

−3
4

(−1)mJ4m(k
√

2)− 1
4
J4m

(
k

sinφ0

)
cos(4mφ0).

(7)

Here, the generic wavevector k is expressed in terms of its
modulus k and of the angle φ formed with the ΓX direc-
tion in the first Brillouin zone (1BZ), k = (k cosφ, k sinφ),
Jα(x) are Bessel functions of the first kind and order α,
and tanφ0 = 1

3 .
Equation (5) is to be contrasted to the phenomenolog-

ical fit

∆k = ∆[B cos(2φ) + (1−B) cos(6φ)] (8)

proposed in reference [6] for ∆k along the Fermi line: in-
stead of requiring an in-plane interaction extended to fur-
ther neighbours, equation (4) endows the superconducting
gap with the observed flat structure around the nodes,
through the ILT term TJ(k). In Figure 1, we fit equa-
tion (5) against Mesot et al.’s experimental data for one
of the underdoped Bi2212 samples in reference [6], hav-
ing Tc = 75 K. A remarkable agreement follows already
by fixing ∆ so that |∆k| reproduces the maximum datum
at k = (π, π), whereas TJ is taken to be 0.04 eV [10].
In particular, besides obtaining an enhanced maximum
value of |∆k| at k = (π, π), we are thus able to recover
the anomalously flat region around the node at φ = 45◦
in a rather natural way. We note, however, that our fit
requires ∆ ≈ TJ/2 around optimal doping, which will not
be without consequences in evaluating other fundamental
quantities [23].
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Fig. 1. Fit for |∆k| within the ILT model, equation (5) (solid
line), and in the case of a simple d-wave gap |∆k| = ∆g(k)
(dashed line), against Mesot et al.’s ARPES data for under-
doped Bi2212 (Tc = 75 K, Ref. [6]).

Equation (5) already contains the doping dependence
of the observed gap anisotropy, although in a hidden way.
As pointed out in reference [11], the auxiliary parameter
∆ is to be self-consistently determined by solving the ap-
propriate gap equation. Besides being intrinsically doping
dependent, this equation is unconventionally modified by
the presence of a k-local effective interaction, as induced
by the ILT mechanism. Moreover, the role of the contri-
bution ∝ TJg

4(k) in equation (5) is strongly influenced by
the actual location of the Fermi line, as g4(k) is sharply
peaked at k = (0, π) (and symmetry related points).

Equation (5) also facilitates the evaluation of the slope
of the superconducting gap v∆ = (1/2)d|∆k|/dφ at the
nodal point along the Fermi line. Such a quantity is related
to the temperature derivative of the superfluid stiffness at
T = 0. In particular, it is seen that the ratio v∆/∆max

decreases with underdoping [6]. From equation (5), one
derives that v∆ is independent of TJ, and that therefore a
doping induced change of v∆ through ∆ essentially can be
traced back to the actual position of the Fermi line, as dis-
cussed above, within the ILT model. The ratio v∆/∆max

will anyway deviate from its value within simple d-wave
(BCS-like) models, as a function of doping, due to the
enhancement of ∆max induced by ILT.

3 Low-temperature asymptotic behaviour
of electronic properties

We now address the issue, whether such extended fea-
tures of the OP near the nodes, as those described in the
previous section, induce deviations in the low or inter-
mediate temperature asymptotic behaviour of linear re-
sponse electronic properties in the superconducting state.
In what follows, we shall limit our discussion to clean
superconductors, and neglect impurity effects altogether.
Mean-field (BCS or BCS-like) expressions for most lin-
ear response electronic properties are available also in
the case of anisotropic, i.e. non s-wave, superconductors.
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In particular, we have in mind observable quantities
such as the superconducting density [27], the electronic
specific heat [27], the spin susceptibility [27], the penetra-
tion depth [28], the thermal conductivity [29], and so on.
Their expressions basically involve the evaluation of some
integral of the kind:

F [β;ϕk(β)] =
1

(2π)2

∫
d2kϕk(β)e−βEk , (9)

where β = (kBT )−1, ϕk(β) is a (dimensional) function of
wavevector k and temperature, related to the electronic
quantity of interest, and the integration is extended to
the 1BZ, k ∈ [−π, π] × [−π, π] (see Appendix A). In the
case of d-wave superconductors, Ek is allowed to vanish
at the intersection between the Fermi line and the nodal
lines of the gap function. Around such points, quasiparti-
cles can be created in large numbers. In the limit of low
temperatures (β → ∞), therefore, the value of the in-
tegral in equation (9) is dominated by the contributions
from wavevectors k close to such point nodes. Around such
nodes, it is useful to introduce the new sets of coordinates
(k1, k2) or (ε, θ), defined as [4]:

ξk ' vF · k ≡ vFk1 = ε cos θ, (10a)
∆g(k) ' v2 · k ≡ v2k2 = ε sin θ, (10b)

in units where ~ = 1. Here, vF and v2 are the Fermi veloc-
ity and a suitable “gap” velocity, respectively, evaluated
at Ek = 0, and ε measures the distance in energy from a
given dispersionless point implicitly defined by Ek = 0.
In terms of the new coordinates, the superconducting
spectrum for a simple d-wave superconductor near a node
therefore looks like an anisotropic Dirac cone [4],

Ek ∼
(
v2

Fk
2
1 + v2

2k
2
2

)1/2
= ε. (11)

The observation of flatter structures near the nodes [6]
not only implies a more significant anisotropy ratio vF/v2,
but also the possibility that higher order terms in ε may
contribute to Ek, (Eq. (11)). Indeed, within the ILT
model, from equation (4) at T = 0 one obtains

Ek ∼ ε
[

1 +
(
ε

ε?

)3

sin6 θ

]
, (12)

to lowest order in ε/ε?, with 1/ε3? = (1/2)(TJ/∆
4) related

to the pair-tunneling amplitude TJ and to the auxiliary
gap parameter ∆ (Figs. 2 and 3).

Other models, based on extended in-plane pairing
mechanisms, would in general yield different polynomial
corrections in ε to Ek. For instance, within the spin
fluctuation theory [30], the following phenomenological
expansion holds for the momentum distribution of the
superconducting energy gap [31]

∆k = ∆g(k)
N∑
n=0

dnh
n(k), (13)

with all coefficients dn = 1. We explicitly observe that
for N = 0, d0 = 1, one recovers the simple d-wave gap

Γ

M

X
Fig. 2. Typical contour lines of the superconducting spectrum
Ek in the simple d-wave case (dashed lines) and in presence of
ILT (continuous line).

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1

E
k 

/ε
*

ε/ε*

v2 k2 = 0 vF k1 = 0

simple d-wave
ILT
extended d-wave

Fig. 3. Deviations from the simple d-wave case, equation (11)
(continuous line), of the superconducting spectrum Ek around
a node, within the ILT model, equation (12) (dashed line), and
in the case of an extended d-wave gap, equation (15) (dashed-
dotted line), as a function of the reduced coordinates ε/ε? (ε/ε̃?,
respectively). Such deviations are most easily seen along the
direction of the nodal line (left panel, v2k2 = 0 or θ = π), and
along the Fermi line (right panel, vFk1 = 0 or θ = π/2). Note
that along v2k2 = 0, one has Ek = ε also within the ILT model.

∆k ∝ g(k), while the case N = 1, with the identifications
∆ 7→ B∆, d0 = 1, d1 = 4(1−B)/B, maps to [6,31]:

∆k = ∆[Bg(k) + (1−B)g(2k)], (14)

which is compatible with the phenomenological fit equa-
tion (8) proposed by Mesot et al. in reference [6] for their
experimental data of |∆k| along the Fermi line [6,31]. In
particular, equation (14) would follow from a correction
δVkk′ ∝ g(2k)g(2k′) to the in-plane coupling, correspond-
ing to next-nearest neighbours interaction.

In such a particular case, and assuming for simplicity
t′ = µ = 0 in equation (3), one straightforwardly obtains

Ek ∼ ε
[

cos2 θ + sin2 θ

(
1− ε

ε̃?
cos θ

)2
]1/2

, (15)
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where ε̃? = tB/(1−B) is now related to the ratio of near-
est vs. next-nearest neighbours coupling. Therefore, both
within the ILT model and within other models, based on
extended in-plane pairing, the additional mechanism re-
sponsible for the nonlinear correction to Ek away from its
nodes introduces new energy scales (here, ε? or ε̃?, respec-
tively). Figure 3 depicts the two different ways in which
Ek deviates from the cone-like shape, (Eq. (11)), near a
node, in the two cases given by equations (12) and (15).

In the absence of any such additional mechanism
(ε?, ε̃? = 0), the leading contribution to equation (9) for
the simplest, reference case ϕk(β) ≡ 1 is:

F1(β) ≡ F [β; 1] .=
A

β2
, (16)

where A = (2πvFv2∆)−1 is a doping-dependent factor,
and .= denotes equality up to terms vanishing exponen-
tially with β at all energy scales, as β → ∞ (T → 0).
Equation (16) should be regarded as typical of the power-
law asymptotic low-temperature behaviour of the super-
conducting electronic properties within a simple d-wave
BCS-like model.

In order to obtain an asymptotic expansion for F1(β)
as β → ∞ (T → 0), including the corrections due to
ILT, (Eq. (12)), we observe that the integration over ε in
equation (9) is actually made of two contributions:∫ ∞

0

dε =
∫ ε?

0

dε+
∫ ∞
ε?

dε. (17)

In the first integral, we may safely retain only the linear
term Ek ∼ ε in the exponent, since ε ≤ ε?. In the second
contribution, this is no longer possible, and equation (12)
has to be retained in full. However, since ε ≥ ε? > 0, one
can make use of Laplace’s (saddle point) method for the
integral over angles around θ = 0. The final result is:

F1(β) ∼ A

β2

[
1− (1 + βε?)e−βε?

+
1

3π
Γ
(1

6

)
βε?Γ

(4
3
, βε?

)]
∼ A

β2

[
1−

(
1 + βε?

− 1
3π
Γ
(1

6

)
(βε?)5/6

)
e−βε?

]
, (18)

where Γ (x), Γ (α, x) are Euler gamma and incomplete
gamma functions, respectively [32]. A comparison of equa-
tions (16) and (18) is provided by Figure 4, and shows
that F1(β) gets effectively suppressed in the presence of
flat nodes in the order parameter, as provided by the ILT
mechanism, with respect to the simple d-wave case, at an
energy scale ∼ ε?.

No such simple asymptotic expansion for F1(β) is
available in the extended d-wave case described by equa-
tion (15), and the integrations have to be performed nu-
merically. Figure 4 shows the result, with the identifica-
tions A 7→ Ã = (2πvFv2B∆)−1 and ε? 7→ ε̃?. In this
case, equation (15) provides Ek with a different kind of
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Fig. 4. Asymptotic power-law (∝ T 2, solid line) and modified
power-law behaviours of F1(β), in the presence of ILT (dashed
line), and in the extended d-wave case (dashed-dotted line), as
(βε?)

−1 → 0. Given the values used for the fits of |∆k| along
the Fermi line in reference [6] and in Figure 1, it turns out that
ε? ∼ 250 K.

anisotropy with respect to the simple case, (Eq. (11)),
than equation (12) does. While in the latter case one al-
ways has Ek ≥ ε, here one has Ek R ε, depending on the
angle θ (cf. Fig. 3). As a consequence, F1(β) is enhanced
with respect to the simple d-wave case, at an energy scale
∼ ε̃?.

4 Conclusions

Motivated by recent experimental findings of extended
flat structures in the order parameters of the underdoped
d-wave superconductor Bi2Sr2CaCu2O8+δ [6], we have ad-
dressed the issue of whether nonlinear, high-energy correc-
tions to the superconducting energy spectrum Ek around
the gap nodes induce deviations in the predicted power-
law behaviour of several electronic properties at low or in-
termediate temperatures. We have shown that nonlinear
corrections to Ek in general introduce additional energy
scales in the problem. Deviations from the usual power-
law behaviour of the superconducting electronic proper-
ties are indeed to be expected at such energy scales, but
the actual value and sign of such deviations are specific
to the model under consideration. In particular, within
the ILT model, we have explicitly derived the expected
corrections to a typical power-law asymptotic behaviour
as T → 0, showing these to be negative, whereas within
a phenomenological model of extended d-wave supercon-
ductivity [6] such corrections are predicted to be positive.
Whether such deviations will actually be observable in
real measurements of superconducting electronic proper-
ties, will of course depend on the effective values of the
additional energy scales ε? or ε̃? in real compounds.
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Appendix A: Low-temperature
superconducting electronic properties

We now give a sketch of how the low-temperature asymp-
totic behaviour of several electronic properties of inter-
est can be reduced to that of F1(β) or its derivatives.
Most electronic quantities in the superconducting state
are in fact given by equation (9), with ϕk(β) actually de-
pending on k only through Ek. In what follows, f(ε) =
[1 + exp(βε)]−1 denotes the Fermi function.

Within BCS theory, the electronic specific heat is given
by [27]:

CV =
∑
k

2kBβEk

[
Ek +

∂Ek

∂β

](
− ∂f

∂Ek

)
∼
∑
k

2kBβE
2
k

(
− ∂f

∂Ek

)
∼ 2kBβ

2F ′′1 (β), (A.1)

where apices denote derivatives with respect to β. Here,
ϕk(β) = 2kBβ

2E2
k, and we have made use of the fact that

(−∂f/∂Ek) .= β exp(βEk).
Analogously, the unrenormalized, static, isotropic spin

susceptibility χ0 = χ0(q → 0, ω → 0), which is directly
related to the Knight shift, is simply given by [21,33]:

χ0 =
∑
k

(
− ∂f

∂Ek

)
.= βF1(β). (A.2)

The expression of the electronic thermal conductivity
for an anisotropic d-wave superconductor also involves an
average of (−∂f/∂Ek) over the 1BZ [29,34]:

κe =
1
T

∑
k

(
− ∂f

∂Ek

)
E2

k

(
∂Ek

∂kx

)2

τ(k), (A.3)

where τ(k) is the superconducting quasiparticles lifetime.
Due to the presence of the x component of the group ve-
locity ∇kEk, however, its expression in our notation re-
duces to:

κe =
1

8π2

`0
v2

1
T

∫ ∞
0

dε ε3
∫ 2π

0

dθ
(
−∂f
∂ε

)(
cos θ +

v2

vF
sin θ

)2

,

(A.4)

where `0 = vFτ(kF) is the quasiparticle mean free path
at the nodes. The final result crucially depends on the
anisotropy ratio v2/vF, and would be different in the two
cases given by equations (12, 15), due to their different
θ dependence. This has to be contrasted with the result
obtained in the simple d-wave case, where [34]:

κe = ηk3
BT

2 `0
v2

(
1 +

v2
2

v2
F

)
, (A.5)

with η = (8π)−1
∫∞

0
dxx3(−∂f/∂x).

Appendix B: A limiting case

In the absence of in-plane coupling, a spurious solution of
the mean-field gap equation at T = 0 can be implicitly
expressed via [11]:

Ek =
1
2
TJ(k) =

1
2
TJg

4(k). (B.1)

In such a limiting case, the superconducting energy spec-
trum would have purely kinetic origin, and would be iden-
tified with the interlayer pair-tunneling amplitude, di-
vided by two. A closed expression can then be obtained
for F1(β), by utilizing the useful result:

1
(2π)2

∫
d2kG[η(k)] =

2
π2

∫ 1

−1

dxG(x)K(
√

1− x2),

(B.2)

where G[η(x)] is any continuous functional of η(k) = h(k)
or g(k) alone, and K(x′) (x′ =

√
1− x2) is the complete

elliptic integral of first kind [32]. From equation (9), ex-
panding K(x′) around x = 0, one eventually arrives at the
closed expression:

F1(β) ∼ 1
π2
Γ

(
1
4

)
1
ζ1/4

(
2 log 2− 1

4
ψ

(
1
4

)
+ log ζ1/4

)
,

(B.3)

where ψ(x) is the digamma function [32], and the ILT
amplitude TJ itself here fixes the appropriate energy scale,
through ζ = 1

2βTJ.
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